Category Archives: Climate & Energy

Two Degrees: Cities, Architecture and Our Changing Environments

Source: Two Degrees: Cities, Architecture and Our Changing Environments | Commonwealth Club

There were a few things in this podcast that struck me. The first was the summary of the thesis of Collapse: How Societies Choose to Fail or Succeed. Societies collapse because one of the 3 following things happen:

  • They don’t think there is a problem
  • They think there is a problem, but think it’s someone else’s to solve
  • They think there is a problem, know it’s theirs to solve, but take ineffective action

This describes how lots of things fail, not just civilizations. I’ve seen so many software projects fail on premise #1 and #2. It seems simple, but as a framing it’s pretty good at classifying where things are stuck.

Efficiency is not sufficient

A lot of the talk was about how we’re going to need to change the built world. We hear a lot of talk about efficiency, which is good, but not sufficient. When it comes to the efficiency of cities, dense infill near transit hubs ends up far surpassing any retrofitting of buildings. Building cities around the idea of decreased car miles is super critical.

Will pipelines carry Hydrogen in the future?

One thing I did not realize is that a lot of our city level infrastructure for the methane/natural gas network existed before natural gas was widely used. It used to carry Coal gas, which is a mix of a lot of things, but notably 70% hydrogen. This means that the city level infrastructure could be reused to supply hydrogen gas in a future where we don’t want to be burning methane. 

There was lots more in the episode, and I’ll have to listen to it a second time because it was so informative. Not everything fits in my brain going over it only once. You can listen to the whole episode on the Commonwealth Club site.

8 months in with Geothermal Heating & Cooling

Last summer about this time we made a big decision. We were going to work with Dandelion (a new geothermal company in the area) and replace all our Fuel Oil based forced air heating and hot water system with a Geothermal system. Instead of burning oil to heat our home, we’d use 1000 feet of water pipe, going up and down a  new 500 foot well to extract and compress heat from the earth.

How does Geothermal Heating work?

Once you get below 10 ft here in our corner of New York State, the ground temperature is about 50 degrees F. This is a giant renewable source where you can either extract heat (in the winter) or dump heat (in the summer), and it really doesn’t budge the ground temp. A compressor is used in the furnace to turn this 50 degree ground loop heat into 90 degree air in the winter, or 42 degree air in the summer.

The compressor is where all the energy is consumed. However,  moving heat is much more efficient than creating it, so heat pumps have efficiencies of over 100%. Typically ground source heat pumps will produce 4 – 5 units of heat for every 1 unit of electricity put in. For cooling it’s even better.

By the numbers

In the winter of 2016-2017 we spent about $2000 on fuel oil and service contract for our old system. That was based on a fuel oil price of about $1.90 / gallon as part of a really good group buy. It was also a relatively warm winter.

The new system went into place on Nov 22nd of 2017. Early in the heating season. This heating season included a 14 day cold snap starting at Christmas where it was 20 degrees below averages the whole time. Even with all of that our electricity add from the furnace was around $650 dollars for the winter (the Waterfurnace system we got has really detailed metrics in it that let me see it’s energy use). There is a harder to account for hot water heating part of the equation, especially as we also got an Chevy Bolt EV this year. Also the year in oil would have been much more than the year before (both in use and cost). But suffice it to say, we come out way ahead on operating costs no matter how you slice it.

Our June and July bills from Central Hudson are less than last years, even though it’s been a hotter summer, and we’re also charging an EV. It looks like for the month of July we’ll end up spending about $32 in electricity for cooling. Here is a graph of all the current number in kWh used.

What else we love about the system

There are lots of qualitative things we love about the system as well. First of it so much quieter. It has 2 stages on both heating and cooling, and stage 1 (the more efficient) runs with a low fan speed that means unless you are in the room adjacent to the furnace it’s hard to know it’s running. This lower fan speed also does a much better job of pushing the heat out to the edges of the house. The whole house got much more consistent.

Getting rid of the fuel oil system means we no longer have a fuel oil tank in our basement of indeterminate age rusting away in the corner. There is no whiff of oil smell at times. The primary risk of carbon monoxide and potential fires in the house is gone. And that 700 gallons of fuel oil we used the last year is no more, which is 3.5 tons of CO2 emissions not taking place (the CO2 from the increased electricity we used in the winter comes to about 0.7 tons).

We installed a whole house humidifier along with it, so now can keep the house comfortable in the winter without filling humidifiers through the house.

And lastly, our screened in porch got so much nicer. The old AC compressor was right outside it, and loud. Now it’s in the basement and can’t be heard outside.

We love it

While I knew on paper that a ground source heat pump like this would be great, having never experienced one before I had this niggling concern all the way through the process in the fall. What would it actually be like?

It’s been amazing. At least once a week I have a moment about how great this new system is. The quiet, the comfort, the savings are all pretty amazing.

CAFE standard of 55mpg seem high? It’s not the real number, and the real number is a lot more interesting.

If automakers complied with the rules solely by improving the fuel economy of their engines, new cars and light trucks on the road would average more than 50 miles per gallon by 2025 (the charts here break out standards for cars and light trucks separately). But automakers in the United States have some flexibility in meeting these standards. They can, for instance, get credit for using refrigerants in vehicle air-conditioning units that contribute less to global warming, or get credit for selling more electric vehicles.

Once those credits and testing procedures are factored in, analysts expected that new cars and light trucks sold in the United States would have averaged about 36 miles per gallon on the road by 2025 under the Obama-era rules, up from about 24.7 miles per gallon in 2016. Automakers like Tesla that sold electric vehicles also would have benefited from the credit system.

Source: How U.S. Fuel Economy Standards Compare With the Rest of the World’s – The New York Times

This is one of those areas where most reporting on the CAFE standard rollback has been terrible. You tell people the new CAFE standard is 55 mpg, and they look at their SUV, and say, that’s impossible. With diesel off the table after the VW standard, only the best hybrids today are in that 55 mpg range. How could that be the average?

But it’s not, it’s 55 mpg equivalent. You get credit for lots of other things. EVs in the fleet, doing a better job on refrigerant switch over. 2025 would see a real fleet average of around 36 mpg if this was kept in place.

More importantly is that in rolling back this standard it’s going to make US car companies less competitive. The rest of the world is going here, and US not just means companies that don’t hit these marks have a shrinking global market.

Electricity Map

In looking for information related to my ny-power demo (which shows the realtime CO2 intensity on the New York power grid), I discovered Electricity Map. This is doing a similar thing, but at a global scale. It started primarily focused on Europe but is an open source project, and has contributions from all over the world. I helped recently on some accounting and references for the NY ISO region.

You’ll notice a lot of the map is grey in the US. That’s because while most of the public ISOs publish their real time data on the web, private power entities tend not to. It’s a shame, because you can’t get a complete picture.

What also is notable is how different the power profile looks like between different regions in the US.

It’s also really interesting if you take a look at Europe

Germany is quite bad on it’s CO2 profile compared to neighboring countries. That’s because they’ve been turning back on coal plants and they shut down their nuclear facilities. Coal makes up a surprisingly high part of their grid now.

The entire map is interactive and a great way to explore how energy systems are working around the world.

Climate change goes to court

Alsup insisted that this tutorial was a purely educational opportunity, and his enjoyment of the session was obvious. (For the special occasion, he wore his “science tie” under his robes, printed with a graphic of the Solar System.) But the hearing could have impacts beyond the judge’s personal edification, Wentz says. “It’s a matter of public record, so you certainly could refer to it in a court of public opinion, or the court of law in the future,” she says. Now, Wentz says, there’s a formal declaration in the public record from a Chevron lawyer, stating once and for all: “It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.”

Source: Chevron’s lawyer says climate change is real, and it’s your fault – The Verge

This week Judge Alsup held a personal education session for himself on the upcoming case where several California Cities are suing the major fossil fuel companies under the assumption that they knew Climate Change was a real threat back in the 80s and 90s, and actively spread disinformation to sow doubt. This is one of many cases going forward under similar framing.

What makes this one different is Alsup. He was the judge that handled the Oracle vs. Google case, where he taught himself programming to be sure he was getting it right. For this case, he had a 5 hour education session on every question he could imagine about climate change and geology. The whole article is amazing, and Alsup is really a treasure to have on the bench.

MQTT, Kubernetes, and CO2 in NY State

Back in November we decided to stop waiting for our Tesla Model 3 (ever changing estimates) and bought a Chevy Bolt EV (which we could do right off the lot). A week later we had a level 2 charger installed at home, and a work order in for a time of use meter. Central Hudson’s current time of use peak times are just 2 – 7pm on weekdays, and everything else is considered off peak. That’s very easy to not charge during, but is it actually the optimal time to charge? Especially if you are trying to limit your CO2 footprint on the electricity? How would we find out?

The NY Independent System Operator (ISO) generates between 75% and 85% of the electricity used in the state at any given time. For the electricity they generate, they provide some very detailed views about what is going on.

There is no public API for this data, but they do publish CSV files at 5 minute resolution on a public site that you can ingest. For current day they are updated every 5 to 20 minutes. So you can get a near real time view of the world. That shows a much more complicated mix of energy demand over the course of the day which isn’t just about avoiding the 2 – 7pm window.

Building a public event stream

With my upcoming talk at IndexConf next week on MQTT, this actually jumped up as an interesting demonstration of that. Turn these public polling data sets into an MQTT live stream. And, add some data calculation on top to calculate what the estimated CO2 emitted per kWh is currently. The entire system is written as a set of micro services on IBM Cloud running in Kubernetes.

The services are as follows:

  • ny-power-pump – a polling system that is looking for new published content and publishing it to an MQTT bus
  • ny-power-mqtt – A mosquitto MQTT server (exposed at mqtt.ny-power.org). It can be anonymously read by anyone
  • ny-power-archive – An mqtt client that’s watching the MQTT event stream and sending data to influx for time series calculations. It also exposes recent time series as additional MQTT messages.
  • ny-power-influx – influx time series database.
  • ny-power-api – serves up a sample webpage that runs an MQTT over websocket bit of javascript (available at http://ny-power.org)

Why MQTT?

MQTT is a light weight message protocol using a publish / subscribe server. It’s extremely popular in the Internet of Things space because of how simple the protocol is. That lets it be embedded in micro controllers like arduino.

MQTT has the advantage of being something you can just subscribe to, then take actions only when interesting information is provided. For a slow changing data stream like this, giving applications access to an open event stream means being able to start doing something more quickly. It also drastically reduces network traffic. Instead of constantly downloading and comparing CSV files, the application gets a few bytes when it’s relevant.

The Demo App

That’s the current instantaneous fuel mix, as well as the estimated CO2 per kWh being emitted. That’s done through a set of simplifying assumptions by looking at 2016 historic data (explained here, any better assumptions would be welcomed).

The demo app also includes an MQTT console, where you can see the messages coming in that are feeding it as well.

The code for the python applications running in the services is open source here. The code for the deploying the microservices will be open sourced in the near future after some terrible hardcoding is removed (so others can more easily replicate it).

The Verdict

While NY State does have variability in fuel mix, especially depending on how the wind load happens. There is a pretty good fixed point which is “finish charging by 5am”. That’s when there is a ramp up in Natural Gas infrastructure to support people waking up in the morning. Completing charging before that means the grid is largely Nuclear, Hydro, and whatever Wind is available that day, with Natural Gas filling in some gaps.

Once I got that answer, I set my departure charging schedule in my Chevy Bolt. If the car had a more dynamic charge API, you could do better, and specify charging once it flat lined at 1am, or dropped below a certain threshold.

Learn more at IndexConf

On Feb 22nd I’ll be diving into MQTT the protocol, and applications like this one at IndexConf in San Francisco. If you’d love to discuss more about turning public data sets into public event streams with the cloud, come check it out.

Power usage after going Geothermal and EV

In November 2017 we replaced our Fuel Oil Heating system with a Geothermal one from Dandelion and bought a Chevy Bolt EV, which we’re using as the primary car in the house. That for us means about 1000 miles a month on it. Central Hudson never actually read our meter in January, so applied an estimated based on our old usage. We finally got a meter reading, so now have a 2 month power usage that I can compare to the last couple of years.

By the Numbers

4700 kWh.

That seems like a lot, but I do have counters on both the furnace and the EV, which were ~2200 kWh and ~800 kWh respectively during this time period. Which leaves us at 1700 kWh for the rest of our load. That’s compares to 1600 kWh last year, and 1500 kWh the year before.

There is also new electric load in the hot water system, which seems to be running pretty efficiently getting dumped waste heat from the water furnace.

This includes the stretch of time where we had a 14 day cold snap with 20 degree below average temperatures (ending with a record low). So while it’s hard to compare to last year directly, it’s pretty favorable. I’m sure that were we on oil we’d have had at least one tank fill during that window if not two, the oil trucks have been running pretty constant in the neighborhood.

 

Opening the power bill had a momentary “oh wow”. But then realizing we no longer have an oil bill, and we’ve only paid for 1 or 2 tanks of gas in the Subaru in this window puts the whole thing in perspective.

Getting to a Zero Carbon Grid

This talk by Jesse Jenkins at UPENN is one of the best looks at what doing deep decarbonization of the grid really looks like. Jenkins is a PhD candidate at MIT researching realistic paths to get our electricity sector down to zero carbon emissions.

Price vs. Value

He starts with the common and simple refrain we all have, which is that research investments in solar have driven down the cost below that of fossil fuels, that cross over point has happened, and renewables will just take off and take over.

But that’s the wrong model. Because of the intermitency of Wind and Solar, after a certain saturation point the wholesale value of a new MWh of their energy keeps decreasing. This has already been seen in practice in energy markets with high penetration.

 Sources of Energy

The biggest challenge is not all sources of energy are the same.

Jenkins bundles these into 3 categories. Renewables are great at Fuel savings, providing us a way not to burn some fuel. We also need a certain amount of fast burst on the grid, today this is done with Natural Gas Peaker plants, but demand hydro and energy storage fit that bill as well. In both of these categories we are making good progress on new technologies.

However, in the Flexible base camp, we are not. Today that’s being provided by Natural Gas and Coal plants, and some aging Nuclear that’s struggling to compete with so much cheap Natural Gas on the market.

How the mix changes under different limits

He did a series of simulations about what a price optimal grid looks like under different emissions limits given current price curves.

Under a relatively high emissions threshold the most cost efficient approach is about 40% renewables on the grid, some place for storage. The rest of the power comes from natural gas. 16% of solar power ends up being curtailed during the course of the year, which means you had to overbuild solar capacity to get there.

Crank down the emissions limit and you get more solar / wind, but you get a lot of curtailment. This is a 70% renewable grid. It’s also got a ton of over build to deal with the curtailment.

But if you want to take the CO2 down further, things get interesting. 

Because of the different between price and value, relatively high priced Nuclear makes a return (Nuclear is a stand in for any flexible base source, it’s just the only one we current have in production that works in all 50 states). There still is a lot of overbuild on solar and wind, and huge amounts of curtailment. And if you go for basically zero carbon grid, you get something a little surprising.

Which is the share of renewables goes down. They are used more efficiently, there is less curtailment. These are “cost optimal” projections with emissions targets fixed. They represent the cheapest way to get to a goal.

The important take away is that we’re in this very interesting point in our grid evolution where cheap Natural Gas is driving other zero carbon sources out of business because we aren’t pricing Carbon (either through caps or direct fees). A 40 – 60% renewables grid can definitely emerge naturally in this market, but you are left with a lot of entrenched Natural Gas. Taking that last bit off the board with renewables is really expensive, which means taking that path is unlikely.

But 100% Renewables?

This is in contrast to the Mark Jacobson 100% renewables paper. Jenkins points out that there have really been two camps of study. One trying to demonstrate the technical ability to have 100% renewables, the other looking at realistic pathways to zero carbon grid. Proving that 100% renewables is technically possible is a good exercise, but it doesn’t mean that it’s feasible from a land management, transmission upgrade, and price of electricity option. However none of the studies looking at realistic paths landed on a 100% renewables option.

Jenkins did his simulation with the 100% renewables constraint, and this is what it looked like.

When you pull out the flexible base you end up with a requirement for a massive overbuild on solar to charge sources during the day. Much of the time you are dumping that energy because there is no place for it to go. You also require storage at a scale that we don’t really know how to do.

Storage Reality Check

The Jacobson study (and others) make some assumptions about season storage of electricity of 12 – 14 weeks of storage. What does that look like? Pumped hydro is currently the largest capacity, and most efficient way to store energy. Basically you pump water behind a dam when you have extra / cheap energy, then you release it back through the hydro facility when you need it. It’s really straight forward tech, and we have some on our grid already. But scale matters.

The top 10 pumped hydro facilities combined provide us 43 minutes of grid power.

One of the larger facilities is in Washington state it is a reservoir 27 miles long, you can see it from space. It provides 3 1/2 minutes grid average power demand.

Pumped hydro storage is great, where the geography supports it. But the number of those places is small, and it’s hard to see their build out increasing dramatically over time.

Does it have to be Nuclear?

No. All through Jenkins presentation Nuclear was a stand in for any zero carbon flexible base power source. It’s just the only one we have working at scale right now. There other other potential technologies including burning fossil fuels but with carbon capture and storage, as well as engineered geothermal.

Engineered Geothermal was something new to me. Geothermal electricity generation today is very geographically limited you need to find a place where you have a geologic hot spot, and an underground water reserve, that’s turning that into steam you can run through generators. It’s pretty rare in the US. Iceland gets about 25% of it’s power this way, but it has pretty unique geology.

However, the fracking technology that created the natural gas boom openned a door here. You can pump water down 2 miles into the earth and artificially create conditions to produce steam and harvest it. It does come with the same increase in seismic activity that we’ve seen in fracking, but there are thoughts on mitigation.

It’s all trade offs

I think the most important take away is there is no silver bullet in this path forward. Everything has downsides. The land use requirements for solar and wind are big. In Jenkins home state of Massachusetts in order to get to 100% renewables it would take 7% of the land area. That number seems small, until you try to find it. On the ground you can see lots of people opposing build outs in their area (I saw a Solar project for our school district get scuttled in this way).

In the North East we actually have a ton of existing zero carbon energy available in Hydro Quebec, that’s trapped behind not having enough transmission capacity. Massachusetts just attempted to move forward with the Norther Pass Transmission project to replace shutting the Pilgrim Nuclear facility, but New Hampshire approval board unanimously voted against it.

Vermont’s shutdown of their Yankee Nuclear plant in 2014 caused a 2.9% increase in CO2 in the New England ISO region, as the power was replaced by natural gas. That’s the wrong direction for us to be headed.

The important thing about non perfect solutions is to keep as many options on the table, as long as you can. Future conditions might change in a way where some of these options become more appealing as we strive to get closer to a zero carbon grid. R&D is critical.

That makes the recent 2018 budget with increased investment credits for Carbon Capture and Storage and small scale Nuclear pretty exciting from a policy perspective. These are keeping some future doors open.

Final Thoughts

 

Jenkins presentation was really excellent, I really look forward to seeing more of his work in the future, and for a wider exposure on the fact that the path to a zero carbon grid is not a straight line. Techniques that get us to a 50% clean grid don’t work to get us past 80%. Managing that complex transition is important, and keeping all the options on the table is critical to getting there.

No Coal this Christmas Season – Personal Climate Action you can take now

“The best time to plant a tree was 20 years ago. The second best time is now.”

Over the last year we’ve done a lot to our house to make it much less energy intensive, bought an electric car, and got  involved in Citizens’ Climate Lobby. The research for all of that created a big pile of links for me, which I’ve tried to summarize here, to really show how many different ways you can make an impact.

This list is customized for New York, because that’s where I live, and where I’ve done all my research. It would be great to see other folks build local guides for their areas as well, and I’d love to link to them.

Where Energy is Used

How do we use energy in the US? Because we measure electricity in kWh, gasoline / fuel oil in gallons, natural gas in cubic feet, sizing them all up and comparing them is hard. And we don’t think about them as a single energy system. At a national level our energy is used by [1]:

  • Buildings – 40%
    • Residential – 20%
    • Commercial – 20%
  • Transportation – 28%
    • Cars, Light Trucks, Motorcycles – 16.2%
    • Other Trucks – 6.4%
    • Planes – 2.2%
  • Industry – 32%
    • Petroleum Refining – 10%
    • Chemical Production – 8.6%
    • Paper Production – 3.5%
    • Metals Production – 3%

The bits of this that always surprise me is that buildings are our key use of energy. Buildings are long term infrastructure. Our house was built in 1960, there are plenty of houses in our area build in 1900. Improving existing buildings is critical to making our infrastructure more efficient. Every improvement we’ve made over the last couple of years will live on beyond us in this home.

The other thing that sticks out is that we use 10% of our energy budget in the US refining petroleum. Much of that to be burned in other parts of the system. Every time we prevent a gallon of gas from burning, we don’t only save it’s emissions, but the emissions that happened when it was refined.

Homes

 

energy-use-chart
Average Home Energy use in NY State

Get a home energy inspection

In NY, the NY State Energy Research and Development Agency has many programs to increase energy efficiency. One of the programs is subsidized home energy audits to give you a targeted plan about what the biggest impacts for saving energy in your home will be.

Air sealing and Attic Insulation

Our home was built in 1960, and insulated to the standard at the time (which was not much). A year ago we went forward on our energy audit recommendations and got our attic air sealed, and 8″ of cellulose insulation put on top. The results were dramatic. Heating dropped about 15%, my home office (which is the far end of the HVAC), no longer needed a space heater, and summer cooling was also dramatically reduced.

Get your energy inspection first, but realize that proper insulation in your home will dramatically, and immediately change the comfort level, and your energy use.

Replace your Oil Furnace with Geothermal

About 50% of homes in NY State heat with Fuel Oil. It is one of the dirtiest way to heat your home.

If you live in the Hudson Valley or Albany regions, Dandelion is a new geothermal company offering package deals to replace your existing oil system with a ground source heat pump. They put a well or two in your front yard, put a sealed tube down it, then use the 50 degree earth and a compressor to heat your home. Heat pumps get about 4 units of heat for every unit of electricity they consume. Ours has been in for about a month, and so far we’re in love. So much quieter, no whiffs of oil smoke, and much more even distribution of heat in the house (it runs the fan slower and longer).

When I did the math, this was the single biggest climate impact we could make. This takes 700 gallons of fuel oil off the table. In comparison, we used about 500 gallons of gasoline in an average year between our cars.

Replace your Oil Furnace with… anything else

Seriously, Fuel Oil is terrible for the environment. While Natural Gas and Propane are still fossil fuels, they emit a lot less both in creating them, and when they burn. If you can’t go the full hog to something like a heat pump, changing from Oil to NG or Propane will reduce your emissions on heating to about 1/2 of what they were before.

Lighting

If you’ve not yet replaced all your lighting in your house with LEDs, do that now. They only use about 20% of the electricity of incandescent bulbs, are more efficient than even fluorescent, and last an incredibly long time (25 year lifespans are common).

If you are a Central Hudson customer you can get 60W replacement bulbs for $1 each. Just do it. While lighting use is overall a pretty low part of your energy budget, it is also very actionable if you haven’t done the conversion to LEDs yet. And, LED lights fit in christmas stockings.

Electricity

The path to decarbonizing the economy is to electrify everything, while simultaneously making the electric grid less carbon intensive.

chart

NY State’s energy production is relatively low carbon, but if we are going to fully decarbonize we do need to reduce natural gas consumed for electricity as much as possible.

Choose a Green ESCO

NY State allows you to choose your energy producer (energy services company, or ESCO). There are a number of companies that provide you with energy from wind farms that they are building regionally. This typically mean a small rise in your energy costs, but that comes with supporting the build out of new renewables.

Two good options in our area are:

Community Solar

NY State has new rules in place that allow for Community Solar in our area. These are small scale (2 Mega Watt or less) facilities that you can sign up and get your power from solar even if you can’t put solar panels on your roof (you have bad site, or are a renter).

Solarize Hudson Valley has sign up information for folks in the area. If you are in the Central Hudson power generation region, Nexamp is building a facility in Wappingers Falls. We’ve signed up, and starting in May of 2018, will be getting our power from solar.

Carbon Offsets

If there is nothing on the list that works for you, but you still want to have an impact on reducing your carbon footprint, consider some kind of carbon offset. Carbon offset projects work to capture carbon, or reduce emissions from something like a landfill. We all share one atmosphere, so any way you reduce emissions helps.

The carbon offset market is a wildly confusing place as an individual. As a NY (or North East) resident, the Carbon Reduction Certificates from the Adirondack Counsil is great. Each certificate is used to buy 1 ton of CO2 off the Regional Greenhouse Gas Initiative annual carbon auction (a carbon trading system for power companies that 9 states have agreed to, and NJ and VA might be joining soon). The price for a ton of carbon on the RGGI is still pretty low, so left over proceeds go to their micro grants program which support local energy efficiency and emissions reduction.

RGGIStates529px_0

Get Engaged

Right now, you need to do something extra, or out of the ordinary to have an impact on climate change. Citizens’ Climate Lobby is a political action group looking to change that, by pricing carbon in the economy. A real price on carbon would make doing the efficient thing, also be doing the cheaper thing, which would make it the default choice in most situations.

We’ve got a local chapter that meets in Beacon, NY once a month, and so if you want to flex your political muscles, as well as your economic ones, sign up and join us.

It all maters

Every action you make matters. And the exciting fact is that there are so many things you can do now to have an impact (including many things not on this list). So take a minute this holiday season and think about how you can take a little bit of coal out of your own Christmas season.

 

Much warmer summers

The map above, based on a new analysis from the Climate Impact Lab, shows how 95-degree days (35 degrees Celsius) are expected to multiply this century if countries take moderate climate action. In this scenario, countries would take some measures, but not drastic ones, to curb emissions — roughly the trajectory of the current pledges under the Paris climate agreement.

The resulting global warming would still cause significant shifts for many cities. In Washington, from 1986 to 2005, an average of seven days each year had temperatures of at least 95 degrees. By the end of the century, the city can expect 29 of these extremely hot days per year, on average. (The likely range is 14 to 46 hot days per year.)

Source: 95-Degree Days: How Extreme Heat Could Spread Across the World – The New York Times

Good analysis on what the impacts of the hotter days coming are going to be. 95 F is as reasonable an arbitrary measuring point as anything else, we’re approaching body temperature there. The article looks at the world under the Paris agreement, as well as without it. The differences are striking.

Interestingly, commercial crop yields (specifically corn and soybeans) start to drop after 84 F. I hadn’t realized that, but it makes sense. That’s how hotter days, even without drought, have negative impacts on our food supply.